On the Generalization of a Class of Harmonic Univalent Functions Defined by Differential Operator
نویسندگان
چکیده
منابع مشابه
A Class of Univalent Harmonic Functions Defined by Multiplier Transformation
A continuous function f(x+ iy) = u(x, y) + iv(x, y) defined in a domain D ⊂ C (Complex plane) is harmonic in D if u and v are real harmonic in D. Clunie and Shiel-Small [3] showed that in a simply connected domain such functions can be written in the form f = h+g, where both h and g are analytic. We call h the analytic part and g, the co-analytic part of f . Let w(z) = g ′(z) h′(z) be the dilat...
متن کاملOn a linear combination of classes of harmonic $p-$valent functions defined by certain modified operator
In this paper we obtain coefficient characterization, extreme points and distortion bounds for the classes of harmonic $p-$valent functions defined by certain modified operator. Some of our results improve and generalize previously known results.
متن کاملOn Integral Operator and Argument Estimation of a Novel Subclass of Harmonic Univalent Functions
Abstract. In this paper we define and verify a subclass of harmonic univalent functions involving the argument of complex-value functions of the form f = h + ¯g and investigate some properties of this subclass e.g. necessary and sufficient coefficient bounds, extreme points, distortion bounds and Hadamard product.Abstract. In this paper we define and verify a subclass of harmonic univalent func...
متن کاملOn a New Subclass of Harmonic Univalent Functions Defined by Fractional Calculus Operator
The purpose of the present paper is to establish some results involving coefficient conditions, distortion bounds, extreme points, convolution, convex combinations and neighborhoods for a new class of harmonic univalent functions in the open unit disc. We also discuss a class preserving integral operator. Relevant connections of the results presented here with various known results are briefly ...
متن کاملBi-concave Functions Defined by Al-Oboudi Differential Operator
The purpose of the present paper is to introduce a class $D_{Sigma ;delta }^{n}C_{0}(alpha )$ of bi-concave functions defined by Al-Oboudi differential operator. We find estimates on the Taylor-Maclaurin coefficients $leftvert a_{2}rightvert $ and $leftvert a_{3}rightvert$ for functions in this class. Several consequences of these results are also pointed out in the form of corollaries.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2018
ISSN: 2227-7390
DOI: 10.3390/math6120312